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ABSTRACT
We prove exponential weak Bernoulli mixing for invariant measures of cer-
tain piecewise monotone interval maps studied in [BK] and [KN]. In partic-
ular we prove this for unimodal maps with negative Schwarzian derivative
satisfying liminfn—oo }/|DT™(Tc)| > 1, where c is the unique critical
point of T'.

1. Introduction

The aim of this note is to prove exponential weak Bernoulli mixing for invariant
measures of certain interval maps studied in [BK] and [KN]. The main result
concerns Collet-Eckmann maps 7: {0,1] — [0,1]. These are unimodal maps of
class C3 with negative Schwarzian derivative

TIII 3 Tll
ST T2 (T’

2
ST i= — — = -——) <90 except at ¢ where T' = 0.

For such maps Collet and Eckmann [CE] proved: If liminf, Q/W > 1,

then T has an invariant probability density. (Indeed, they used some additional

assumption, which was removed in [No].) We call this class of maps Collet—

Eckmann maps.

As a consequence of the general metric theory of S-unimodal maps [BL, Ke,
Le] it is known that an invariant probability density h, if it exists at all, gives
rise to a measure preserving dynamical system which is mixing (and even weakly
Bernoulli) up to a finite rotation. This means that there is a finite disjoint
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collection of p intervals Iy, ..., I,_; which are cyclically permuted by T, and T?,
restricted to any of these intervals, is unimodal and mixing. If p =1, T is called
nonrenormalizable, otherwise we say T is finitely renormalizable.

In particular, if T is nonrenormalizable, the natural partition of {0,1] into the
monotonicity intervals (0,¢) and (¢, 1) of T is a weak Bernoulli generator. This
means that the o-algebra F§° coincides, up to sets of Lebesgue measure 0, with
the Borel o-algebra and that

ﬂn(T,Z,u) — 0 as n — oo,
where

(L1) (T, Z,u):=2-sup / sup{|u(A|FE) - u(A)l: A € F2..} du,
k>0

p := h - m denotes the invariant measure, and F} is the o-algebra generated by
the partitions T7*Z (k < i < £).
The aim of this note is to prove

THEOREM 1: If T is a nonrenormalizable Collet~-Eckmann map satisfying the
additional regularity assumptions (1.2) below, then thereareC > 0and0 <r <1
such that B,(T, Z,u) < C-r™ for alln > 0.

The weaker assertion that correlations of sufficiently well behaved functions
decrease exponentially to 0 was already proved in [KN, Theorem 1.1] and [Yo].
The additional regularity assumptions are
There is a constant M > 0 such that

_ -1
1. M‘1<|x cl

Z__— <M forallz,
|DT ()|
T — cle—l
2. va T <M and
12) oo <M e
|Tx — Tu| [Tz — To|
3. varpy o —u[[DT ()| and varp, j |z — v||[ DT ()| <M
ifu<e<w.

These conditions are satisfied e.g. if T is a polynomial map with vanishing
derivatives at c of all orders up to £ — 1, but also for T(z) = a(1 — |2z — 1|) with
real £ > 1. In both cases conditions 1. and 2. are easily checked. For condition 3.

one should observe that the expressions of interest are bounded by 1 if both, z
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and u (resp. v), are close to ¢, and that the derivatives of these expressions have
a bounded number of sign changes.

As in [KN] we reduce the investigation of Collet—-Eckmann maps to the situa-
tion studied in [BK].

Theorem 1 is useful for proving probabilistic limit theorems like the central
limit theorem or the law of the iterated logarithm for statistics based on samples
(x,Tz,...,T" 'z) where z € [0, 1] is picked at random from ([0, 1], Lebesgue) or
([0,1], i), see e.g. [HK, Theorem 5] and [DK]. A central limit theorem for the
process (z, Tz, T?x,...) itself is already proved in [KN,Yo].

2. Maps with countably many monotone branches

In this section let 7 be a finite or countable family of intervals (which are subsets
of some totally ordered, order complete space, cf. [HK, Ry]). Let X be the disjoint
union of these intervals I € Z. Suppose further there is a family £ of disjoint
subintervals of X (in particular, for each Z € Z there is [ € Z with Z C I) and
let Y = ez Z.

We study a transformation T: Y — X such that for each Z € Z holds

(2.1) JI €I suchthat T(Z)CI and

(2.2) Tz is monotone on Z and has the Darboux property
. (i.e., if J C I is an interval, then 7'J is an interval).

For an interval J C X and a function f: X — C define

var ;(f) :=sup { Z |f(a:) — flai-1)l:

n>1a0<ay < <@y, a; €J},

var (f) I=Z"ar 1(f),

IeT

(1 flleo == ngp |f1,

IeT

£ 118y :=var (f) + || f|loo-

Let BV := {f: X — C: ||fllpv < oo}. Then (BV,]||.||gv) is a Banach space.
Fix g: X — C and define g,: X — C by

gn(x) 1= g(x) - g(Tx) - g(T" '2)
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and

1/n
(2.3) 9:= lim (sup Ignt> .
X

n-—->o00

We make the following assumption on g:

(2.4) My :=sup {var j(g) + Z sup|g|: I € T} < oo.
z

zez
zC1

Associated with T and ¢ is the transfer operator

L:BV - BV, fm— Z(f-g)oTl}l.
zez

If Z,:={ZoNT"1Z:N-- -NT-(n=1z .7 € Z for all i} and T, "= (T”I,,)‘1
for n € Z,, then

Lrf=> (frgn)oT;™

N€EZn

By |£| we denote the transfer operator associated with T and |g|. Both, £ and
|£| are bounded linear operators on BV, see [BK, Lemma 2.2].

LEMMA 1: Let J C I € T be an interval, fy, fo: J — C. Then

lIxs - f1- fallBv < (VarJ(fl) +583P|f1|> (VarJ(fz) +iIJ1f|f2|)-

Proof:
lxs - f1- fellv < sup |f1]-var (xs - f2) + (var (xs- f1) + Sljplfll) sup | f2]
<sup|fa] -2 (var s () + inf |2l
+ (var o) + 3up sl ) (var () + i)
J

< (varJ(fl) +531;p|f1|) (VarJ(f2)+i3f|f2|) L

The following lemma is an adaption of an estimate from [Ry] to our setting.



Vol. 86, 1994 EXPONENTIAL WEAK BERNOULLI MIXING 305

LEMMA 2: For f € BV let

vo(f) = IfllBv, on(f)i= D 1L (X Fllav (n>0).

N€EZn

For each © > ¥ there is a constant C > 0 independent of f such that for all
n>0

n—1
wn(f) <C- (9"|lf|lav +y @k|||£|"—k|f||loo) :

k=0
Proof: Consider 7 = n' N T~*n" where 1y € 2, 1y’ € Z;, and n = k + £. Then,
writing J 1= T™n, J' := T*n, ¢ := (g¢ X') oTy;,,g = L%y and ¥ 1= L¥(xp - f),
we have
1L 0 - HllBy = lIxs - L5(xn - L5 - £))llBY
=|Ixs-¢-Wo Ty )llav

< (var J() + 5sup |<p|) (vary(w) + 1&1}f |w|) Lemma 1
J

< (Var n(ge) + 5sup ’gfl) - var i (¥) + 5|ILZX77"”BV l;}’f || -
nl’

As J =T"n C I for some I € T and as var ,+(ge) + 5sup,. |ge] < Cy - ©F with
some constant C; > 0 by [BK, Corollary 2.4], this yields

Vkte(f Z HﬁkH (xn - HllBv
(2.5) gcl et. Zvar(llk )

555 1oy > (121 - 1)

IeTq"Cl

<Cr-0 u(f)+5) llﬁ‘xnffllav-ir;,f(lﬁl’“lfl)
n
IeTn'CI

(2.6) <C1- 0" u(f)+5) velx) sup|£| 17l .
IeT

Observe next that foreach 7 €7

U1 Z ILxzllBv < Z (varz g)+ 2sup |g|) < 2M;

Zez ZEZ
zClI zCl
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by (2.4). Hence (2.5) yields, if applied to f = x1,, lo € Z, and £ =1

i i1(X1o) < C1© - vr(x1p) + 10M1 - [[|1£1* Xz oo
and it follows by induction that

S :=sup{w(xr): I €I} < o0

for all k > 0. Therefore we can continue (2.5) by
(2.7) Uk e(f) < C1 - 0% up(f) + 108, - L1110 -
Now pick © € (9,0) and fix £, > 0 such that C; - ©% < ©%. Then (2.7), for ©

instead of ©, results in

Veyty () < O 0k (f) + 105, - 1L]*Iflloo
and induction yields for all n = (5 + 1)¢, (j > 0)

7
V1) (F) < OUFDC||fl gy + 108, - Y ©J|1L]07D%|f]|o -
=0

Another application of (2.7) gives the desired estimate for arbitrary n. |

Suppose now that there is a Borel measure m on X such that

d
(2.8) dmoT) = E, ¥9<1, and Ms:=sup{m(I): I €I} < .
dm g
(In particular, g > 0 and |£| = £.) Then
(2.9) /Lfdm:/fdm for all f € L1
and
(210) [1s1dm < S mid)-sup 11 < Mo il < o0
IeT

for all f € BV. Under some additional assumptions, which will be discussed
below, it is shown in [BK] (cf. also [Ry]) that £ has the following spectral de-

composition:

N
(2.11) L= MPi+Q,

=1
where A; =1, |X;| =1 (i = 1,...,N), the P; are finite rank projections, P;P; =
P;Q =0 (i # j), and there are K > 0 and r € (¢,1) such that ||Q"||py < K -r"
(n > 0).
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Note: The facts that the spectral radius p(£) = 1 and that the leading eigen-
values of £ are semisimple are deduced from (2.9).

Each of the following additional assumptions is sufficient for the spectral de-
composition (2.11):

(A) var(g) + 3 ,czsupz |g] < co. (See [Ry] or [BK, Theorem 2.8}.)

(B) (X,T) is the Markov extension of a piecewise monotonic interval map with
finitely many monotone branches, and g and m are the lifts of the corre-
sponding objects of the interval map to X, see (4.1) in [BK].

(C) (X, T) is the Markov extension of a Collet—-Eckmann map, and g and m are
in a suitable way multiplicatively cohomologous to the lifts of the function
1/|T’| and the Lebesgue measure on [0, 1] respectively, see [KN].

The two last cases will be discussed in more detail in the next section.
We shall say that £ is mixing, if A} = 1 is the only eigenvalue of modulus 1
and if it is a simple eigenvalue of L.

THEOREM 2: Suppose (X,T), g and m are as described above (in particular
¥ < oo0) and such that the spectral decomposition (2.11) holds. If £ is mixing,
then there is a unique h € BV with h > 0, [hdm = 1, Lh = h, and for the
T-invariant measure y = h-m

Bn(T, Z,u) < const - r"

holds with r < 1 from (2.11). (8,(T, Z, ) was defined in (1.1).)

Proof (Cf. [Ry]): Consider A € F23,, A= T~ A with A € F°, and 5 € Z4.
We have

W(AZ)) = ;ﬁ / Xo - / £ (x, - h) dm

and as p(A) = p(A) and P (L*(x,-h)) = fq hdm-h = u(n)-h by (2.8), it follows

that
Jo et am

< =5 [ 17 (xn b) = o) ] dm

I(A|Zx) — p(Aljy =

1l

“N(lm/lgn(ﬁk(xn : h))l dm .
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This implies

Bu(T, Z,p) =2- sup /sup{lu(AIf(’f) - uw(A)]: A€ Finldu

<2-sup | Y My [|Q*LF(xy Rl | Dy (2.10)
n€EZs

<2M;-[|Qlsv ssup | D I1£5(xn - Blloo
k>0 nEZx

< 2M, - Kr™ - sup v (h)
E>0

_C_
1-0©
by (2.11) and Lemma 2 for some C > 0 and © € (9,1). |

<2My-Kr™.

3. Proof of Theorem 1

In this section X is denotes a linearly ordered, order complete set {which is com-
pact as a topological space with its order topology), and T: X — X is supposed
to be a piecewise monotonic transformation, i.e. there is a finite partition Z of
X into intervals such that T}z is monotone and continuous for each Z € Z. Let
also a Borel probability measure m on X and a function g: X — R of bounded
variation be given such that 1/g = d(mo T)/dm.

The Markov extension of (X,T) is a dynamical system (X ,T) together with
a projection 7: X — X such that Tor =noT. Its phase space X = Urezr I
is a disjoint union of at most countably many subintervals I of X, and =|; (for
I € ) is just the canonical embedding of I into X. This construction, which is
due to Hofbauer, is described in [BK], where also further references are given.

Let Z2:=IVvnlZ, §:= g om. If we define the Borel measure M on X by
m(A) = m(r(A)) for measurable A C I € Z, then the system (X,T) together
with the partitions Z and Z, the weight function § and the measure m fits into
the setting of section 2, see section 3 and (4.1) of [BK]. Let us denote by BV,
E, etc. the objects BV, L, etc. for )?, and observe that 9 = 9. If 9 < 1, then C
has the spectral decomposition (2.11), and if L is mixing, then there is a unique
b € BV such that L= h-# is a T-invariant probability measure, and by Theorem
2, ﬂn(f, z, fi) < const - 7™ for some 7 € (9,1). Let p:= fiox~!. Obviously,
Bn(T, Z,p) < ﬂn(f, Z, i1}, and we have proved
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CoroLLARY 1 ([HK, Ry]): If (X,T), Z, g, m and p are as above and if ¥ < 1,
then there is v € (9,1) such that 5,(T, Z, u) < const - r™.

Suppose now that T: [0,1] — [0,1] is a nonrenormalizable Collet~-Eckmann
map (see section 1). With ¢ = 1/IT’| and m =Lebesgue measure we are in
the situation described above except that g is unbounded (as T7(c) = 0) such
that neither is g of bounded variation nor is ¥ < co. In order to overcome this
difficulty a function @: X — (0, 00) was constructed in [KN] such that the weight
function

-~

g:)?—»R, g:=(gom):

@oT

satisfies 2.4 [KN, Prop. 6.2] and 9 < 1 [KN, Prop. 6.3]. If 7 denotes the measure
on X with density @ with respect to the Lebesgue measure on X , then obviously
1/§ = d( o T)/dm and sup{m(I): I € I} < oo [KN, Prop. 6.1], i.e. assumption
(2.8) is satisfied. Furthermore, Theorem 2.1 of [KN] and the discussion at the
beginning of section 5 of that paper show that L has the spectral decomposition
(2.11) and is mixing. In particular, there is a unique h € BV with 0 < h = Lh,
and the system (f, ji := hin) is mixing. Hence Theorem 2 applies to (/\7 ,T), g,
m and fi. Denoting by p := ji o 77! the projection of i to X, we conclude

Bn(T, 2, p) < ﬂn(fﬁ,ﬂ) < const - " for some r € (9,1) .
This proves Theorem 1 from the introduction.
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