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ABSTRACT 

We prove exponent ia l  weak Bernoulli  mixing for invar iant  measu res  of  cer- 

t a in  piecewise mono tone  interval m a p s  s tud ied  in [BK] and  [KN]. In  partic- 

ular  we prove this  for un imoda l  maps  with negat ive Schwarzian derivative 

sa t i s fy ing l imin fn - -oo  ~/IDTn(Tc)I > 1, where  c is the  un ique  critical 

point  of  T.  

1. I n t r o d u c t i o n  

The aim of this note is to prove exponential weak Bernoulli mixing for invariant 

measures of certain interval maps studied in [BK] and [KN]. The main result 

concerns Collet-Eckmann maps T: [0, 1] ~ [0, 1]. These are unimodal maps of 

class C 3 with negative Schwarzian derivative 

T "  3 (T" '~  2 
S T . -  T' 2 \ T' ] <_0 except a t c w h e r e T ' = 0 .  

For such maps Collet and Eckmann [CE] proved: If liminfn--.oo ~/[DTn(Tc)[ > 1, 

then T has an invariant probability density. (Indeed, they used some additional 

assumption, which was removed in [No].) We call this class of maps C o l l e t -  

E c k m a n n  maps .  

As a consequence of the general metric theory of S-unimodal maps [BL, Ke, 

Le] it is known that  an invariant probability density h, if it exists at all, gives 

rise to a measure preserving dynamical system which is mixing (and even weakly 

Bernoulli) up to a finite rotation. This means that there is a finite disjoint 
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collection of p intervals Io , . . . ,  Ip-1 which are cyclically permuted by T, and T p, 

restricted to any of these intervals, is unimodal and mixing. If p = 1, T is called 

n o n r e n o r m a l i z a b l e ,  otherwise we say T is f in i te ly  r en o rm a l i zab l e .  

In particular, if T is nonrenormalizable, the natural partition of [0,1] into the 

monotonicity intervals (0, c) and (c, 1) of T is a weak Bernoulli generator. This 

means that the a-algebra $ '~  coincides, up to sets of Lebesgue measure 0, with 

the Borel a-algebra and that 

/3n(T,Z, tt) ~ 0 as n ~ ec, 

where 

(1.1) j3,~(Z, Z,  #) := 2. sup sup{[p(A[~'0 k) - #(A)[: A e ~'~+,~} #, 
k>0 

:= h .  m denotes the invariant measure, and ~'[ is the a-algebra generated by 

the partitions T - i Z  (k <_ i < e). 

The aim of this note is to prove 

T H E O R E M  1: I f  T is a nonrenormalizable Collet-Eckmann map satisfying the 

additional regularity assumptions (1.2) below, then there are C > 0 and 0 < r < 1 

such that ~n(T, Z,  #) <_ C .  r ~ for all n > O. 

The weaker assertion that correlations of sufficiently well behaved functions 

decrease exponentially to 0 was already proved in [KN, Theorem 1.1] and [Yo]. 

The additional regularity assumptions are 

There is a constant M > 0 such that 

(1.2) 

IX --  C[ £-1  
1. M - 1 <  < M  for a l lx ,  

IOT(x)l 

Ix - ~l ~-~ 
2. var[o,1] IDT(x) I < M  and 

ITx - Tul and 
3. var[o,~4 I x -  u[[nT(x)l  

i f u < c < v .  

[Tx - Tvl 
var [v,1] [x - v[ lOT(x)[ < M  

These conditions are satisfied e.g. if T is a polynomial map with vanishing 

derivatives at c of all orders up to g - 1, but also for T(x)  = a(1 - 12x - 11 t) with 

real ~ > 1. In both cases conditions 1. and 2. are easily checked. For condition 3. 

one should observe that the expressions of interest are bounded by 1 if both, x 
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and u (resp. v), are close to c, and that the derivatives of these expressions have 

a bounded number of sign changes. 

As in [KN] we reduce the investigation of Collet-Eckmann maps to the situa- 

tion studied in [BK]. 

Theorem 1 is useful for proving probabilistic limit theorems like the central 

limit theorem or the law of the iterated logarithm for statistics based on samples 

(x, T x , . . . ,  T n - l x )  where x E [0, 1] is picked at random from ([0, 1], Lebesgue) or 

([0, 1], #), see e.g. [HK, Theorem 5] and [DE]. A central limit theorem for the 

process (x, Tx ,  T 2 x , . . .  ) itself is already proved in [KN,Yo]. 

2. Maps  wi th  countably  many m o n o t o n e  branches  

In this section let 2- be a finite or countable family of intervals (which are subsets 

of some totally ordered, order complete space, cf. [HK, Ry]). Let X be the disjoint 

union of these intervals I E 2-. Suppose further there is a family Z of disjoint 

subintervals of X (in particular, for each Z E Z there is I E 2- with Z C_ I) and 

let Y : U z e z  Z. 
We study a transformation T: Y ~ X such that for each Z E Z holds 

(2.1) 3 1 E 27 such that T(Z)  C_ I and 

(2.2) TIZ is monotone on Z and has the Darboux property 

(i.e., if J C_ I is an interval, then T J  is an interval). 

For an interval J C X and a function f :  X -* C define 

var d(f )  :----sup { ~ If(ai) - f(ai-1)l :  
i = l  

n _> 1,ao < al < . . .  <an,  ai E J},  

var ( f )  := E var , ( f ) ,  
IEZ  

[lflJo~ := Esup If[, 
ICZ I 

IlflJBv :=var (I) + Ul l~ .  

Let B V  := {f:  X --+ C: liflIBV < co}. Then (BV, I]. IIBv) is a Banach space. 

Fix g: X --~ C and define g,: X ~ C by 

gn(x) := g(x) . g (Tx) .  . .g(T'~-lx)  
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and 

(2.3) up I) '/" 0 :=  lim s [gn 

We make the following assumption on g: 

(2.4) M1 :-- sup {var ,(g) + Z sup 191: I e z} < o0. 
ZEZ Z 
zc_t 

Associated with T and g is the transfer operator 

C: B V  -'~ BY~ f H ~ ( f ' g )  o~r~z1. 
ZEZ 

If Zn := (ZoAT-1ZxN .. .AT-(~-I)zn-I:  Z/E Z for all i} and T~ ~ := (Tnl~) -1 
for r/E Z~, then 

c"s = Z (f.g )o T; 
r/EZ,~ 

By IZ:l we denote the transfer operator associated with T and [gl. Both, £ and 
IL:I are bounded linear operators on BV,  see [BK, Lemma 2.2]. 

LEMMA 1: Let J C_ I E Z be an interval, f l , f2:  J --* t2. Then 

IIXJ" f l"  f2llBV - < (var j ( f l ) +  5s~p I f l l ) (var  j ( f2 )+  i~f If2 0 . 

Proof: 

llx~" f~" f211-v < sup l f ~ t - j  var (Xj. J'2) + (var (Xj- f l )+  sup 1]'1 [ ) j  • sup IS21j 

< sup If11 • 2 (var J(f2)+ i~f If2l) 
J 

+ ( v a r j ( f l ) +  3Sgpl f l l ) (varg( f2)+  i~f If2 0 

< ( v a r j ( f l ) +  5suPIfll)j (varj( f2)+il~fl f21) | 

The following lemma is an adaption of an estimate from [Ry] to our setting. 
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LEMMA 2: For f E B V  let 

vo(f) := IlfllBv, v~(f)  := ~ IIZ:'~(X,. f)IIBv (n > 0). 
71E Z~ 

For each @ > v9 there is a constant C > 0 independent of f such that for all 

n>_O 

v~(f)  < C.  o~llfllBv + Oklllz:P-klflll~ . 

k=O 

Proof'. Consider r /= r/' n T-k~ " where 7/E Zk, ~" E Ze, and n = k + L Then, 

writing J := T~rl, J '  := Tk~?, qo := (ge" Xn")o T~,, e = £eXn,, and ¢ := £k(Xn,. f),  
we have 

Ilz::k+e(x," f ) l lBv = IIxJ" £e(xo"" £k(X~'" f))llBV 

= IIxJ "~" (¢ o T~;,e)llBv 

< (var a (~ )+  5sup I ~ l ) j  (va ra , (¢ )+  i J i ¢  0 Lemma 1 

i~fl¢l • \ o' / 

As J = Tnr] C_ I for some I E Z and as varn,,(ge ) + 5sup,,, [gel < C1 • Oe  with 

some constant C1 > 0 by [BK, Corollary 2.4], this yields 

(2.5) 

(2.6) 

Vk+e(f) : ~ II£k+e(X," f)ll~v 

< c1. o ' .  Z var (Ck(X,,- f)) 
7/' 

+ 5E Z Z Jfl// 
I EZ ~" C_I rfl 

<_ 61 " Oe " vk( f )  + 5 ~-~ ~ IIU~,:IIBv " i~f(IZ:lklfl) 
IEZ'rI"C_I 

<_ C1" 0 e" vk( f )  + 5 E ve(x~)" sup i z ; I k l f l  . 
I IEZ 

Observe next that for each I E Z 

ZEZ Z6Z 
ZC_l ZC_i 
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by (2.4). Hence (2.5) yields, if applied to f = XIo, Io E 2", and g = 1 

Vk+l(XIo) <_ V ie"  vk(XIo) + 10MI" IIIClkXzoll~, 
and it follows by induction that 

Sk :---- s u p { v k ( x I ) :  I E 2"} < 

for all k > O. Therefore we can continue (2.5) by 

(2.7) vk+e(f) ~ CI " 0 g " v k ( f )  -[- 10S~"  IIIz:lklflll~ 

Now pick ~ E (0, O) and fix to > 0 such that C1 • (~eo < Oeo. Then (2.7), for 

instead of O, results in 

vk+eo(f) <_ Oeo . vk(f) + 10Seo. IIIZ:lklflllo~, 
and induction yields for all n = (j + 1)go (j _> 0) 

J 

v<j+l)eo(f) _< o (j+l)e° IIflIBv + lOSeo. ~ o "° IllZl (~-~>~° Ifll[o~ • 
i = 0  

Another application of (2.7) gives the desired estimate for arbitrary n. 1 

Suppose now that  there is a Borel measure m on X such that 

(2.8) d ( m o T ) _  1 O < l ,  and M 2 : = s u p { m ( / ) : I E 2 - } < c ~ .  
dm g' 

(In particular, g > 0 and I£1 = £.) Then 

f Z . f d m = f f d m  for all f E L 1 (2.9) 

and 

(2.10) f lft dm < ~ m(I). sup Ill ~ M2. Ilfll~ < 
I IEZ 

N 

(2.11) 1: = E Ai~i + Q,  
i=1 

Under some additional assumptions, which will be discussed 

(cf. also [Ry]) that Z: has the following spectral de- 

where A1 = 1, ]Ai] = 1 (i = 1 , . . .  ,N),  the Pi are finite rank projections, 79iPj = 

79iQ = 0 (i ¢ j) ,  and there are g > 0 and r E (0, 1) such that ]]Q~llsv < g .  r ~ 

(n > 0). 

for all f E BV. 
below, it is shown in [BK] 

composition: 
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Note: The facts that the spectral radius p(£) = 1 and that the leading eigen- 

values of £ are semisimple are deduced from (2.9). 

Each of the following additional assumptions is sufficient for the spectral de- 

composition (2.11): 

(A) vat (g) + Ez~z supz Igl < ~ .  (See [Ry] or [BK, Theorem 2.8].) 

(B) (X, T) is the Markov extension of a piecewise monotonic interval map with 

finitely many monotone branches, and g and m are the lifts of the corre- 

sponding objects of the interval map to X, see (4.1) in [BK]. 

(C) (X, T) is the Markov extension of a Collet-Eckmann map, and g and m are 

in a suitable way multiplicatively cohomologous to the lifts of the function 

1~IT' [ and the Lebesgue measure on [0, 1] respectively, see [KN]. 

The two last cases will be discussed in more detail in the next section. 

We shall say that £ is mixing ,  if A1 = 1 is the only eigenvalue of modulus 1 

and if it is a simple eigenvalue of £. 

THEOREM 2: Suppose (X, T), g and m are as described above On particular 

< c~) and such that the spectral decomposition (2.11) holds. I f £  is mixing, 

then there is a unique h E B V  with h >_ O, f h d m  = 1, £h  = h, and for the 

T-invariant measure # = h • m 

13n(T, Z, #) < const • r n 

holds with r < 1 [rom (2.11). (13n(T, Z ,  #) was defined in (1.1).) 

Proof(Cf.  [Ry]): Consider A E ~ '~k ,  A = T-(~+k)A with A E ~-~, and y C Zk. 

We have 

1 L #(AIZk)I~ = #(~) X~" h dm - #(~) £ '+k(X ~ • h) d m ,  

and as tt(A) = #(A) and Pl(t:k(X~ .h)) = f~ h d m . h  = #(7) .h  by (2.8), it follows 

that 

,tt(AIZk) -- #(A)[,~ --- / ~  ( p - ~ £ n + k ( x ~  . h) - h )  dm 

1 / [cn÷k(x. h) -.(7). hi dm 

1f =,(7) din. 
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This implies 

~,~(T, Z ,# )  = 2 . sup  / sup{lp(Al$'o k) - #(A/l: A E .~-~°~n} d# 
k>0 

<_ 2M2"  K r  n • sup vk(h) 
k>O 

C 
<_ 2M2 • K r  n • - -  

1 - 0  

by (2.11) and Lemma 2 for some C > 0 and O E (~), 1). I 

3. P r o o f  o f  T h e o r e m  1 

In this section X is denotes a linearly ordered, order complete set (which is com- 

pact as a topological space with its order topology), and T: X --~ X is supposed 

to be a piecewise monotonic transformation, i.e. there is a finite partition Z of 

X into intervals such that T i z  is monotone and continuous for each Z E Z. Let 

also a Borel probability measure m on X and a function g: X --+ R of bounded 

variation be given such that 1 /g  = d ( m  o T ) / d m .  
A 

The Markov extension of (X, T) is a dynamical system (X, T) together with 

a projection ?r: 5( ~ X such that T o ~r = r o :F. Its phase space )( -- U1ez I 

is a disjoint union of at most countably many subintervals I of X, and ?rll (for 

I E 2-) is just the canonical embedding of I into X. This construction, which is 

due to Hofbauer, is described in [BK], where also further references are given. 

Let 2 := I V ~ - I Z ,  t} := g o ~r, If we define the Borel measure ~ on )( by 
A A 

Cn(A) = m ( r ( A ) )  for measurable A C_ I E I ,  then the system (X,T)  together 

with the partitions 2- and ,~, the weight function ~ and the measure ~ fits into 
A 

the setting of section 2, see section 3 and (4.1) of [BK]. Let us denote by B V ,  

~, etc. the objects B V ,  £, etc. for )(, and observe that ~ = ~. If ~ < 1, then 

has the spectral decomposition (2.11), and if/~ is mixing, then there is a unique 

E B~'V such that  ft = h . ~  is a :F-invariant probability measure, and by Theorem 

2, ~n(T, 2,  ft) < const,  r n for some r E (~, 1). Let # := 1~ o ~r -1. Obviously, 

~n(T, Z, #) _< ~,~(T, Z, ft), and we have proved 



Vol. 86, 1994 EXPONENTIAL WEAK BERNOULLI MIXING 309 

COROLLARY 1 ([HK, Ry]): I f ( X , T ) ,  Z,  g, m and # are as above and ifO < 1, 

then there is r E (0, 1) such that fl,~(T, Z,  #) <_ eonst • r n. 

Suppose now that T: [0, 1] -* [0, 1] is a nonrenormalizable Collet-Eekmann 

map (see section 1). With g = 1lIT' I and m = Lebesgue measure we are in 

the situation described above except that g is unbounded (as T'(c) = 0) such 

that  neither is g of bounded variation nor is 0 < co. In order to overcome this 

difficulty a function ~: )~ ~ (0, co) was constructed in [KN] such that the weight 

function 

~: X - ~  R, ~ := ( g o ~ ) .  ~ 

satisfies 2.4 [KN, Prop. 6.2] and 0 < 1 [KN, Prop. 6.3]. If ~ denotes the measure 

on .~ with density ~ with respect to the Lebesgue measure on )(, then obviously 

1/[7 = d(~n o T ) / d ~  and sup{~(I) :  I • Z} < ec [KN, Prop. 6.1], i.e. assumption 

(2.8) is satisfied. Furthermore, Theorem 2.1 of [KN] and the discussion at the 

beginning of section 5 of that paper show that  E has the spectral decomposition 

(2.11) and is mixing. In particular, there is a unique h • B~'V with 0 < }z = Eh, 

and the system (T,/5 := h~)  is mixing. Hence Theorem 2 applies to ()(, :F), ~, 

and/5. Denoting by # :=/5 o 7r -1 the projection of/5 to X, we conclude 

t3n(T, Z, #) _< ~n(T, Z,/5) < const • r n for some r e (0, 1) . 

This proves Theorem 1 from the introduction. 
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